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Abstract

A multi-variable frequency-domain maximum likelihood estimator is proposed to identify the modal
parameters together with confidence intervals directly from the input—output Fourier data. The use of
periodic excitation signals enables the use of a so-called non-parametric errors-in-variables noise model for
an accurate description of the measurement set-up. The combination with a maximum likelihood
identification approach yields a solver that is extremely robust to errors in the data, such as noise and
leakage and hence results in accurate models. Since the maximum likelihood approach involves an
optimization problem, a least-squares estimator is proposed as well, with the availability of a stabilization
diagram. Both algorithms have been optimized for modal analysis applications by a significant reduction of
the computation time and memory requirements. In the case when random noise excitation is required, the
proposed method allows a parametric compensation for effects of leakage.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The common approach for experimental modal identification starts from frequency response
functions (FRF), which are derived using a non-parametric FRF estimator such as H; or H, [1]
(see Appendix A for list of abbreviations). Next, the modal parameters are estimated using curve
fitting schemes, such as the Prony scheme [1,2], eigensystem realization (ERA) [3] or rational
fractional polynomial (RFP) algorithms [4,5]. One of the most popular identification schemes
used in the industry consists of a two-step approach [6]. First the poles and modal participation
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factors are estimated with the polyreference LSCE estimator (based on the Prony scheme) for
different model orders and poles are selected from a stabilization chart. In the second step, the
poles are fixed in the modal model and the mode shapes are estimated by means of a least-squares
frequency-domain (LSFD) solver [2].

However, traditional modal analysis can be hampered by one or more of the following
problems:

® As a first step, FRF estimation is most often performed using the H; FRF estimator. However,
over-restrictive assumptions about the noise model, i.e., only noise present on the responses,
results in inconsistent FRF estimation, which implies a bias error on the FRF estimates.
Introducing a non-parametric errors-in-variables (EV) noise model [7,8] yields an improved
representation of the measured data by considering errors both on the force and response
observations. The proposed ML estimator is based on the errors-in-variables
formulation starting from the Fourier series of the measured force and response signals
(i.e., the input—output data). Accurate FRF estimation is also possible based on EV non-
parametric estimators, such as the H;, (arbitrary excitation [9,10]) or H,, (periodic
excitation [8]).

® Another problem relates to the use of arbitrary excitation signals (e.g., random noise) which
introduces effects of leakage, especially when only short time sequences can be obtained from
lightly damped structures. Even when time windowing (e.g., Hanning) is applied, both the
effects of leakage and the window itself can result in significant errors on the modal parameters
(especially the modal damping). Random noise excitation is often still used in modal testing
since possible non-linear distortions are reduced by averaging. However, periodic signals, such
as multisine or periodic chirp signals, avoid effects of leakage and generally result in signals of
better quality. The proposed ML estimator will be evaluated using both random and periodic
excitation signals.

e FRF data is commonly accepted as the starting point for modal analysis and the main reasons
are the use of averaging to reduce noise on the data as well as to retain a more compact data set.
Nevertheless, in the case when periodic excitation is applied, the same benefits are retained by
averaging the Fourier spectra of the measured force and response signals (denoted as 1O data).
In addition, starting directly from the force and response Fourier data avoids FRF
computation, which can be hampered by the effect of drops in the force signal, due to for
example, an interaction between the structure and the excitation devices. This can result in
important errors especially in the case of mechanical structures with a high dynamical range.
The proposed ML estimator starts from the IO data and will be compared to its FRF-based
equivalent discussed in Ref. [11].

e Generally, the commonly used curve fitting schemes are not able to handle noisy measurements
and often result in unclear stabilization plots, which hampers the mode selection process.
However, by a better exploitation of the information in the data, more information can be
extracted in terms of the uncertainty on the data. In practice, the coherence function is well
known as a measure for the quality of an FRF. Nevertheless, traditional curve fitting schemes
never take this information into account during the parametric identification. On the other
hand, the proposed ML estimator is specifically developed to improve parameter estimation by
taking the uncertainty on the measured data into account.
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In Refs. [8,12] a frequency-domain maximum likelihood (ML) algorithm is presented for
parametric identification of both single input single output (SISO) and multiple input multiple
output (MIMO) models from IO data. The formulation of the 1O estimators is based on an errors-
in-variables noise model, where both the errors on the input and output signals are considered.
One of the drawbacks of maximum likelihood solvers which are often referred to is their
computational load for large amounts of data. In the present contribution, the numerical
performance (computation time, memory usage and numerical conditioning) of frequency-
domain ML techniques is optimized to handle extensive modal data sets characterized by a high
modal density. Furthermore, the proposed IO ML estimator is made robust for effects of leakage,
when applying arbitrary excitation, by estimating simultaneously the initial conditions and the
system model parameters.

2. Parametric frequency-domain identification
2.1. Parametric model

In this paper, a common denominator model is used to model the frequency response function
between output o and input 7 (for 0 = 1,2,...,N, and i = 1,2, ..., N;) at angular frequency wy
with f =1, ..., Ny (N; the number of spectral lines)

Boi(Qfa 9)

A(Qy,0)°

with B,i(Qr,0) = 377 by, the numerator polynomial and A(Qy,0) = 37, @2, the common-
denominator polynomial, where n is the order of the polynomials (which can differ for both
polynomials) and Q, the generalized transform variable. In this case, a discrete-time domain
model is used, where the generalized transform variable €, evaluated at the discrete Fourier
transform frequency f, is then given by Q; = -4 (Z-domain) with T the sampling period.
The polynomial coefficients a; and b,; are the parameters 0 to be estimated. Other choices are
possible such as for example Qy = (—iws/ws) for a continuous-time domain model (with wg =
(w1 + wy,)/2 a scaling factor used to improve numerical conditioning) or orthogonal Forsythe
polynomials.

H,i(y) = (1)

2.2. Errors-in-variables noise model

In practice, the measured responses (velocities and/or accelerations) as well as forces are
affected by errors, i.e., measurement noise and process noise (due to environmental influences
which act as non-measured forces on the structure). Hence, as shown in Fig. 1, the measured 10
Fourier data Z = [F", X"]" can be represented using an errors-in-variables stochastic noise model

Z(wyr) = Zo(wy) + Ez(wy),
[Ho(wy), —1In,1Zo(wy) = 0,

with Z, = [F?,XIO{]H the “true” input—output (IO) Fourier data and E; = [EE,EI)}I]H some
random perturbations, where Z(wy), Zo(wy), Ez(wf)eC(N"J“N"Xl).

f=1..N, (2)
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Fig. 1. Frequency-domain errors-in-variables noise model.

The errors Ez(wy) are assumed to be complex normally distributed with the following a priori
known covariance matrix

(€)

CEXEF (Cl)f) CEX (a)f)

where the non-diagonal elements of the output noise covariance matrix Cg, are not considered
throughout this work. This follows from the practical issues related to the derivation of a full rank
covariance matrix Cg,(wy) for a large number of responses (N,), which requires that the number
of measurements is minimally equal to the number of responses. Furthermore, a time-efficient
implementation of the IO estimators requires that Cg, is diagonal as will be shown.

On the other hand, since the number of inputs is typically small (V;<5), input correlations as
well as input-output correlations can be determined, resulting in Cg,(wy) and Cg, g, (wy) being full
matrices for each measured output. Taking into account, besides the noise variances, the cross-
correlations of the errors on the IO data as well, can further decrease the uncertainty of the
estimates.

For the particular case of scanning laser Doppler vibrometer (SLDV) measurements, the errors
on the (subsequent) output measurements are uncorrelated since each response location is
measured separately resulting in zero non-diagonal elements of Cg,(wy), and hence an exact noise
model will be used for an SLDV setup.
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2.3. Maximum likelihood identification from input—output data

Using the common denominator model (1) and given the 10 data as defined in Eq. (2), the
linearized equation error for output o and spectral line f is then written as the following scalar
expression:

£o(Qr,0) = | Bo(Qr,0) | {F(wy)} — A(Qr, 0)Xo(y), (4)

where {F(wyr)} represents the input (N; x 1) Fourier vector and X, the output Fourier coefficient
measured at degree of freedom (d.o.f.) o for spectral line f as a result of the &; inputs. The (1 x N;)
row vector | B,(€y,0) | is the oth row of the (N, x N;) numerator polynomial matrix B(Q/, 0).
Notice that in the specific case of SLDV measurements, a different input Fourier vector {F,(wy)}
is measured for each output d.o.f.

Based on the weighted equation error &5(Qr,0) = e,(Q2r,0) var(e,(2r, 0))"'/? the ML cost
function is given by

N, Ny
Can(0) =" ) ei(Qr, 00 (2. 0)
o=1 f=I

= - % |LB0(‘Qf’ Q)J {Fo(a)f)} - A(Qfa H)Xvo(a)f)l2

p var(e,(Q2r, 0)) ’ )
where the variance of the equation error (4) is given as
var(e,(Qy, 0)) = | Bo(Qy,0) | Cr, ()| Bo(Qr,0) |™ + [4(2., ) var(X,(ey))
— 2herm(| Bo(2y,0) | Cr, £, 1:0/(0) A(Qr, 0)"), (6)

with Cg,g,[.0(®r) the oth column of the matrix Cg,g,(wy) in Eq. (3).
2.4. Frequency-domain identification in the presence of transient phenomena

A typical problem for frequency-domain estimators in general arises from the presence of
transient phenomena in the data, of which spectral leakage is an important example. Problems of
leakage are avoided when the signals are acquired using an excitation signal that is periodic or
time limited within the observation window as in the case of e.g., an impulse or burst random
excitation. However, when random noise excitation is required, the applicability of frequency-
domain modal parameter estimation from IO data can be generalized to arbitrary signals based
on [13].

When the modal parameters are derived directly from the IO data there is in general a
difference between time- and frequency-domain methods. This difference is mainly due to the
manner in which the initial conditions of the system are taken into account. This can be
understood by considering the Laplace transform of the jth derivative of the force time signal f(7)
of a SISO system

&1 (1) 1 df ()
L{ dﬂ.} S’F()—ZS’ ar | (7)
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where the sum is a polynomial in the Laplace variable of order (j — 1) which only exists if the
initial conditions differ from zero. Hence, when taking the initial conditions into account, the
Laplace transformed SISO input—output differential equation is given as

A($)X (s) = B(s)F(s) + T(s), (8)

where the order of T'(s) equals the maximum order of B(s) and A(s) minus 1 with unknown
coefficients 07 = [co, c1, ...,cn,l]T.

From this it follows that a transient polynomial T(€r,0) can be used to model the initial
conditions (e.g., the effects of leakage) present in the 10 data. For example in the case of the ML
estimator, adding the polynomial 7(€r,0) to the equation error ¢, results in the following
generalized cost function:

2
v (LB, 0, 7(2,0) J{ T — 427, 00X, ()
O = ) var(e,(Qy, 0)) '

o=1 f=1

©)

The (unknown) coefficients of 7€, 0) are included in 0 and are estimated simultaneously with
the coefficients of B(Qy, 0) and A(€y, 0). This result indicates that taking a ‘transient’ polynomial
into account is equivalent with having one additional input with a constant Fourier spectrum
equal to 1, and as a result, the same 10 algorithms can still be applied. Hence, parametric
frequency-domain estimators can be made robust for leakage by estimating the initial (and final)
conditions together with the system parameters.

3. Fast implementation of ML algorithm

Before presenting the frequency-domain ML algorithm, first the least-squares (LS) solver for
modal parameter estimation from IO data will be explained. This LS estimator will serve as a
starting value generator or as stand-alone method with a stabilization diagram. The techniques
used to optimize the computational efficiency will be explained for the LS and can be easily
generalized for the ML estimator.

3.1. (Weighted) linear least-squares solver

Since Eq. (4) is linear in the parameters and in the Fourier data, it can be formulated as JO~0

0
rL o 0 - ®, B
05,
0 I, 0 - @ S 10
. . . . . BBN
0 0 - Iy o o
04

with J the Jacobian matrix now having NyN, rows and (n + 1)(N,N; + 1) columns. A similar
formulation can be obtained for real coefficients for which the number of equations and
coefficients is then doubled. The entries of the submatrices I', = [[y1, ..., Ton,] (Ny X Ni(n+ 1))
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and @, (Ny x (n+ 1)) are given by

Coi(wp) = Wo(wp)[20, 25, ..., QF(wy),

@, () = ~Wo(0)[Q2, QL ..., 21X, (), (1)
while the parameter vector entries contain the (unknown) coefficients

08, = [bo10, bot1s - bonml's  0=1, ..., N,,

04 = [ag, ai, ..., an]" (12)

An adequate (frequency-dependent) weighting function W,(wy) in Eq. (4), generally improves the
quality of the parameter estimates (see Section 4).

However, since the number of measured frequencies Ny is typically large for modal testing (i.e.,
Ny>n), the LS formulation based on the so-called normal equations JHJO~0 results in a more
compact formulation of the identification problem (J"'J having (n + 1)(N,.N; + 1) rows and
columns)

R, 0 - S, ZBI
0 Ry, 0 S, B . 0
0 A (13)
SIS D Tk 1 1 s

\

with R, having (n 4+ 1)N; rows and columns, S, having (n + 1)N; rows and (r + 1) columns, and
T, having (n 4+ 1) rows and columns, where

R;l R(I)Nf
RZl RZN,-
R,=| ° 0 and S, =[S!,S2, ...,SM". (14)
R]’V,l .. _' RA",‘N[
0 0

The entries of the submatrices are given by

Ny
.o - 1H S
[RI2], = > W) PF (o) Fi(wn)Qy 2,
=

Ny
i r— H S—
(S, = —; W) PE () Xo(wn) Q) @57,

Ny
[Tols =Y W) Xo(op)PQ " 25 (15)
=1

From Egs. (13) and (15) it clearly follows that the submatrices of the normal matrix have a
predefined structure. By exploiting the specific matrix structure, an important reduction of the
computation time and memory requirements is obtained. More specifically, when a discrete-time
model is used (i.e., Qr = e(-irT)) the submatrices R,, S, and T, have a Toeplitz structure while
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the entries can be computed by means of the fast Fourier transform (FFT) algorithm if the
frequencies are uniformly distributed [14]. Using a discrete time-domain model leads to both a
well-conditioned Jacobian and normal matrix. In the case of a continuous time-domain model,
orthogonal polynomials have to be used to significantly improve the numerical conditioning
[15,16].

Although the number of rows of the normal matrix in Eq. (13) is much smaller than the number
of rows of the Jacobian matrix in Eq. (10), its size (i.e., (n+ 1)(IV,N; + 1)) is still often of
importance for the computation time in the case of typical modal test data (N, > 100) since
solving Egs. (13) for 0 requires (N,N;n)® flops.

Under the condition that the LS parameter constraint only applies to the denominator
coefficients 04 (e.g., by fixing highest order coefficient a, = 1), the numerator coefficients 0, can
be eliminated from the normal equations by substitution of

930 = —R;lSOQA, 0 = 1, ...,NO, (16)

in the last (n + 1) equations of Eq. (13), which yields a very compact problem

No
[Z T, - SIR;!'S,

o=1

0, = DO, ~0. (17)

The square matrix D has a size (n 4 1) and thus is much smaller than the original normal matrix in
Egs. (13) with size (n + 1)(NV,N; + 1). Once the denominator coefficients 0, are known, a back-
substitution can be used to find 0g based on Eq. (16).

Similar to the well-known (polyreference) LSCE estimator, the results of this frequency-domain
LS approach can be used to construct a stabilization chart in order to separate the physical poles
(corresponding to a mode of the studied system) from the mathematical ones. To construct a
stabilization chart, the poles have to be estimated for increasing model orders. To do this in an
efficient way, the LSCE estimator first constructs a so-called “covariance matrix” for a given
maximum model order [6]. Once formed, the LS problem can be solved for all smaller model
orders by using sub-matrices of the full covariance matrix. The same idea can be applied to
Eq. (17) where

N,

> T,-SIR,'S,

o=1

(18)

plays a similar role as the covariance matrix. By doing so, a set of LS solutions is obtained for a
varying order of the denominator polynomial while the order of the numerator polynomials is
kept constant and equal to the maximum specified order.

It turned out that the choice of LS constraint applied on the denominator coefficients to remove
parameter redundancy in model (1), plays an important role in obtaining a clear stabilization
chart. The best results were obtained by constraining the highest order coefficient of the
denominator to one, i.c., a, (see Section 4).
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3.2. Maximum likelihood solver

The ML estimates of the polynomial coefficients are obtained by minimizing Eq. (5) with
respect to these parameters 0. This can be done by means of a Gauss—Newton (or Levenberg—
Marquard for improved convergence) optimization algorithm, which takes advantage of the
quadratic form of the cost function (5). The Gauss—Newton iterations are given by

(1) solve the normal equations
IN3,6,, = —JIHe,,  for 5, (19)

with e,, = e(0,), J,n = 0e(0)/0],, and e(0) = [¢], ..., &} ]".
(2) compute an update of the previous solution 6,,

0m+1 = Hm + 5m- (20)

However, when complex-valued coefficients are used, the equation error &)(€y, 0) in Eq. (5) is
not analytical in the (complex) parameters 6 and hence, the entries of the Jacobian matrix J,, can
only be computed by considering the real and imaginary part of the coefficients as

Om = [Re(05,)", Im(3p)", ..., Re(0.0)", Im(3.)'T", (21)
JRe,,, = ae(eRe,Im)/aeRe|()Rem Jlmm = ae(GRe,Im)/aelm|0R8m‘1mm- (22)

The entries in Egs. (22) of the Jacobian matrix J,,, for the weighted equation error at spectral line
f, are found to be given as

Jmyy

1 oe, B 1 o ovar(e,)
var(e,)'/? 90re,im ] 2var(e,)? Oreim

Rep,Impm Rem Impm

L JRe,,,,Imm J o = > (23)

where &,(€2, Ore,,.im,,) 1S denoted as &,.

Since the correlations between the outputs are omitted and a common denominator model (1) is
used, the Jacobian matrix J,, in Eq. (21) has a similar block structure as the Jacobian matrix of
the least-squares formulation in Eq. (10). As a result, the normal equations (i.e., qume and Jﬁem
in Eq. (21)) are also structured matrices

( [ FH81 i
N AR
0 R, 0 S B2 2%
Lo : S : , (24)
‘ ' ' 505, e
SHEE D DA ¥ . NoT
’ 00,4 PIAIR

and hence it is again possible to construct these in a time-efficient way making use of the Toeplitz
structure and FFT algorithm in the case that a discrete-time model is used. Furthermore, given
the block structure of J,,, the first N, blocks can be eliminated from the normal equations
analogously to the LS algorithm presented in Section 3.1.

A practical implementation of the ML algorithm for modal parameter estimation from IO data
obtained by means of a SLDV, is often done when only the variances of the responses are taken
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into account (i.e., Cr = 0 and Cpy, = 0 in Eq. (6)). This can be justified by the fact that most
important measurement errors are typically present on the outputs since occasional drops in laser
beam reflection or spikes can result in important errors on some of the response signals.

While the cost function (5) is uniquely defined, this is not the case for the equation error
&) (Qr,0) and hence the equation error &,(€, 0) can be formulated as

£0(Qr,0) = | Ho(Qy, 0) | {F(w))} — Xo(wy), (25)
with [I:IO(Qf, 0) | = | Bo(Qy,0) | /A(Qy,0) and the following expression for the variance
var(e,(Q2y, 0)) = var(X,(wy)). (26)

Weighting the equation error (25) by var(e, (€, 0))’1/ ? results in an expression that is analytical
in the complex polynomial coefficients . For this particular case, the Jacobian matrix J,, has the
same structure as the Jacobian matrix in Eq. (10), with the submatrices I',; and ®, given by

I Q(w))Fi(w)) Q" (1) Fi(1) 1

Va4, 0)  JNar(Xo(@)A(wr, 0)

T, = : : , (27)
Q(wn,)Flwy,) N Q"(on,)Fi(on,)
L/ Var(Xo(wn, ) A(wy,, 0) VVvar(X,(wn,)A(wn,, 0) |
and
- Q@) Bo(@1,0) [{Fl@)} Q)| By(@1,6) | {F(w)}
Vvar(X,(on)) [4(w;, 0)] Vvar(X,(w))) |A(wy, 0)]
®, = : : . (28)
Q(wn,) | Bo(wy,, 0) | {F(wny,)} Q' (wn,)| Bo(wy,,0) | {F(wy,)}
N (on) Moy 0F  NarK(en) [y, 0)

Given the uncertainty on the measurements as defined in Egs. (2), the covariance matrix of the
ML estimate 0, can be computed according the approximation

COmr) =[], (29)

with J,, the Jacobian matrix evaluated in the last iteration step of the Gauss—Newton algorithm
[17]. As the main interest is in the uncertainty on the modal frequencies and damping ratios, only
the covariance matrix of the denominator coefficients is required. Starting from the previous
approximation, it can be shown that this matrix is given by

N, -1
C0)~ [(Z T, - SERglso)] : (30)
0=1

with R,, S, and T, the submatrices of the normal equations JEJm, similar as defined in matrix
(13). Hence it is not necessary to invert the full covariance matrix of the normal equations JEJm.
Moreover, the covariance matrix (30) is the inverse of the matrix that is also computed to solve the
normal equations that are obtained after elimination of the numerator coefficients from Eq. (19).

Based on matrix (30), the uncertainty on the poles (modal frequencies and damping ratios) can be
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derived [18]. Hence, confidence bounds are obtained together with the modal parameters, without
the need for a Monte Carlo approach.

4. Experimental validation
4.1. Effects of excitation, data and noise model type on model accuracy

In a first case study, shaker excitation is used to measure an aluminium plate in 39 points by
means of a SLDV set-up, as shown in Fig. 2. A random noise or multisine were used for shaker
excitation in a band between 0 and 4096 Hz. Each period contains 8192 time samples. A second
and unknown (unmeasured) excitation was generated by means of a loudspeaker producing
random noise. A reference measurement was performed to obtain a so-called “true FRF” from

112mm

Measured force Unmeasured
signal shaker excitation

Fig. 2. Dimensions and excitation/response locations for Al-plate under test (top). Experimental SLDV setup (middle).
Force (input) measurement with shaker, stinger and impedance head attached to the aluminum plate in point 1 and
unmeasured acoustical excitation using loudspeaker around point 24 (bottom).
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experimental data by averaging 10 periods acquired under a multisine excitation, while the
loudspeaker was turned off. In this case the signal-to-noise ratios for the force and response
spectra were around 40-50 dB. The errors-in-variables non-parametric FRF estimator, presented
in H,, [8], yielded a reference data set for evaluating the effects of the choice of excitation signal,
type of data (IO vs. FRF) and use of noise covariance information on the model accuracy.

The effect of incorporating noise covariance information from an EV noise model is illustrated
in Fig. 3 showing the amplitude and phase of a true FRF and the estimated model using 10 data
for multisine excitation with a high level of process noise generation by the loudspeaker, resulting
in poor signal-to-noise ratios the force and response spectra around 5-10 dB. In fact, the actual
FRFs are very noisy, which complicates the model estimation and leads to very poor results in the
case of the traditional curve fitting schemes. By taking into account knowledge about the
uncertainty on the data, the IO ML estimator still succeeds in estimating an accurate transfer
function model very well. The benefits of using additional information about the data can be
clearly observed from the comparison of the transfer function models when considering the EV
model or not. The variances of the input and output Fourier series are easily obtained by means of
a sample variance computation since the signals are acquired using periodic (multisine) excitation.

In general, all modes are significantly better estimated by means of the proposed 10 ML
estimator and this is especially so for the modes at 463 and 1256 Hz. Obviously, this also has its

ML-IO
50 T T T T T T T T

Ampl. (dB)
o

_50 1 1
200 400 600 800 1000 1200 1400 1600

200

100

o

Phase (degree)

-100

-200

200 400 600 800 1000 1200 1400 1600
Freq. (Hz)

Fig. 3. Amplitude and phase of true FRF (+) and synthesized model obtained from Fourier IO data under multisine
excitation for high level of extraneous noise source (loudspeaker). Improved accuracy by incorporation of EV noise
model (solid) compared to not using noise covariance information (dashed).
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implications for the mode shapes. For example the mode around 1256 Hz can only be clearly
identified if the appropriate noise model is taken into account, as illustrated in Fig. 4.

The error on each of the estimated modes significantly increases for a poor mode excitation and
a significant feedback of the extraneous (unmeasured) noise source in the measured force signal.
Both effects result in noise on the data, which can only be treated well by taking this data
uncertainty into account during the ML estimation.

The influence of the excitation signal used is illustrated in Fig. 5, showing the amplitude and
phase of true FRF and the estimated model using the H; FRF data obtained for a multisine and
random noise excitation, for a high level of random noise produced by the loudspeaker. The FRF
data is processed using the FRF ML estimator [11], where the variance for each of the H; FRF is
computed from its coherence function. The choice of a broadband periodic excitation, such as a
multisine signal, has important benefits with respect to the final model accuracy. Better signal-to-
noise ratios and leakage-free signal processing yield better data quality compared with random
noise excitation and for the same number of acquired data samples.

Fig. 4. Comparison of mode at 1256 Hz in model obtained from IO data under multisine excitation without (top) and
with (bottom) including EV noise model.
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Fig. 5. Amplitude and phase of true FRF (+) and synthesized model obtained from H; FRF data under multisine
(solid) and random noise (dashed) excitation for high level of extraneous noise source (loudspeaker).

Using multisine excitation, the use of 10 data further improves the accuracy since a much more
accurate noise model is taken into account compared to FRF data, which is computed under H;
noise assumptions introducing to some extent bias errors in experimental FRF data. This is
illustrated in Fig. 6 giving the amplitude and phase of true FRF and the estimated models
obtained for multisine excitation using (H;) FRF and 10 data. The most important differences
appear at the frequencies corresponding with the resonances of the system, which however are
most important for modal analysis. Amplitude differences up to 10 dB can still be seen, explained
by errors in the FRF data.

Remark. In order to preserve the clarity of the presentation of the results, only the first part of the
frequency band 0—4 kHz has been shown in Figs. 3, 5 and 6. However, it is should be noted that
the IO ML estimator, presented in Section 3.2, is very robust for high model orders (up to 100
modes, by the use of discrete-time model) and hence it was possible to accurately analyse the total
frequency band (containing around 40 modes) in a single MLE analysis.

4.2. Stabilization diagram, computation speed and leakage modelling

A second case study deals with modal test data obtained from a slat track of an Airbus A320
commercial aircraft. Slat tracks are located at the leading edge of an aircraft wing and form part
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Fig. 6. Amplitude and phase of true FRF (4) and synthesized model obtained from Fourier 10 (solid) and H; FRF
(dashed) data under multisine excitation for high level of extraneous noise source (loudspeaker).
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Fig. 7. A Slat track mounted in the wing of an Airbus320 aircraft.

of a gliding mechanism that is used to enlarge the wing surface (see Fig. 7). The enlargement of the
wing surface is needed to increase the lift force at reduced velocity during landing and
take off.

Fig. 8 shows the experimental setup. An electrodynamic shaker was used to apply a multisine or
a random noise excitation in the frequency band 0-4000 Hz with 16,384 frequency lines. The time
histories of the applied force and response (acceleration) were measured using an impedance head.

A model with 22 modes was estimated in the frequency band 250-1500 Hz containing 1000
spectral lines. Fig. 9 shows the velocity/force ratio of the Fourier transformed signals (dots) and
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Fig. 8. Force (input) measurement with shaker, stinger and impedance head attached to the slat track (top, left).
Velocity measurement with SLDYV in grid of 352 points (top, middle & right). Some mode shapes of the slat track with
bending and torsional behavior (bottom).

the model (solid) estimated by the 1O least-squares (top) and IO maximum likelihood (bottom)
solvers. The ML approach is more suited to deal with SLDV measurements that are partially
corrupted by spikes and poor reflection (when beam targets on edge of ribs on component) that
introduce measurement errors.

However, as a starting values estimator, the fast IO least-squares estimator (see Section 3.1)
also enables the fast construction of stabilization charts. Fig. 10 shows the stabilization diagram
for the LSCE (top) and the weighted 1O LS frequency-domain estimator (bottom) with (+) stable
and (e) unstable poles (i.e., with positive real part). Both the use of a proper weighting
function, ie., W(ws) = Var(Xo(cof))_1 in Eq. (10), and the fixation of the highest order
denominator polynomial coefficient (@, = 1), generally result in clear stabilization
charts for the IO weighted LS (WLS) yet with an acceptable accuracy for data sets with
reasonable noise levels.

Fig. 11 compares the full ML (without use of elimination) and fast ML (denoted as FML,
presented in Section 3.2) algorithms in terms of flops count, for a varying number of outputs N,
(with N,, =20, N; = 1) and a varying model order N,, (with N, = 10, N; = 1). Considering the
output dimension N,, the results indicate that one iteration of the full ML problem is solved in
O(N?) flops, whereas ()(N,) flops for one iteration of the FML, resulting in a gain of ¢(N?) flops,
explained by the elimination approach. On the other hand, for an increasing model order, the
number of flops used by the ML and FML is similar, i.e., O(N2).

The use of a transient polynomial is illustrated using this slat track data. Using the 10 data
obtained by the multisine, an ML estimate of the transfer function model is used as reference data.
As a first case, the complete random noise time records (number of time samples
N; = 32,768 = 32 K) were considered. Fig. 12(a) compares the model obtained by the IO ML
estimator using the FFT of the time records, when using a transient polynomial or not. The
dashed—dotted line corresponds to the reference model obtained from the multisine data. The
(non-parametric) empirical transfer function estimate (ETFE [19]) (dots), computed as the ratio of
the output and input Fourier spectra, is a very noisy function as can be expected. From these data,
the IO ML estimator yielded a model without (dashed line) and with using a transient polynomial
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Fig. 9. Amplitude and phase of 10 data (e) and estimated transfer function model for slat track using IO LS (top) and
10 ML (bottom) estimators.

(solid line). A model with 30 modes was estimated for a frequency band 200-1500 Hz. By zooming
in, the effects of leakage can already be noticed when no transient polynomial is used, as for
instance for the mode at 1156 Hz. In this case the zoomed frequency band has 921 spectral lines
(Ny = 921). Decreasing the size of the records clearly introduces more leakage effects in the case of
random noise data, as is shown in Fig. 12 for Ny = 8 K (Ny = 231 in zoom) (b) and Ny =2 K
(Ny =359) (c). As can be seen for this experimental case, the approach using the IO ML with
transient polynomial is very robust for short data records. Even in the case of 2 time samples
corresponding to a frequency resolution of 4 Hz, this approach can still estimate an accurate
model compared to the approach without using this transient polynomial.

The IO ML approach can also be compared with the FRF-based ML [11]. The FRF data can
be obtained either by computing a H; estimate, which however requires the averaging of a number
of subrecords, or by computing the ETFE also using a Hanning window. Since, in the general case
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Fig. 10. Stabilization diagram for LSCE (top) and IO WLS (highest order a, = 1) (bottom) with (4 = stable),
(e = unstable, i.e., positive real part) and (solid = averaged sum FRFs).

of short data records, the first possibility is not applicable, a comparison was done using the
ETFE. Fig. 13 shows a zoom on the results found when using the FRF ML for the same analysis
parameters as for the 10 estimation for a decreasing size of the records. As can be seen, the
estimated model is acceptable in the case of the 32 K samples; however, due to important leakage
errors the results quickly deteriorate for a decreasing blocksize when compared to the IO ML
approach that also models the transient effects. The use of a Hanning window is not sufficient
once the records become short, in this case N, = 2 K or less.

4.3. Improvements for flight flutter data analysis

In this section the case of flight flutter testing will be considered to validate the IO ML
algorithm for very noisy data. The classical flight flutter testing approach consists of expanding
the flight envelope of an airplane by performing a vibration test at constant flight conditions,
curve-fitting the data to estimate the resonance frequencies and damping ratios, and then
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monitoring these frequencies and damping estimates against flight speed or Mach number. The
damping values are then extrapolated in order to determine whether it is safe to
proceed to the next flight test point. However, it is well known that it is usually quite difficult
to obtain accurate estimates of damping ratios. Consequently, having confidence intervals
on the damping estimates should make the decision to proceed to the next test condition more
reliable.

To illustrate the possibilities of the ML estimator for very noisy data, it is now applied
to flight flutter data. Here noise means the effects of unmeasured forces, such as turbulence
effects, that act on the airplane. Since these effects are found only in the responses, this results in
very noisy data. Nevertheless, by taking knowledge about this noise into account by means
of the ML estimator according to an EV model it is still possible to obtain accurate modal
parameters.

Based on a SISO measurement consisting of 3 swept-sine bursts, the Fourier 10 data and
corresponding noise covariance matrix is obtained as the sample mean and variance over the 3
bursts. Fig. 14 shows the 10 data presented as the ETFE and the synthesized transfer function
model estimated by the IO WLS and 10 ML solvers. Comparing these results, it is concluded that
the quality of the model estimated by the maximum likelihood estimator is superior to the least-
squares approach for flight flutter modelling, especially for the mode at 6.2 Hz which is very
difficult to estimate due to high noise levels. Actually, this mode is less well excited by the
excitation device (rotating vane) resulting in a poor contribution of this mode in the response
dominated by the noise on the data. Using a proper weighting function for the LS estimator, i.e.,
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Ny =8 K (Ny =231) (b) and Ny, =2 K (Ny = 59) (c).

W, (wr) = var()(o(cuf))’l in Eq. (10), clearly improves the quality of the starting values and hence
reduces the number of required ML iterations needed for a proper convergence.

5. Conclusions

In this paper the applicability of the frequency-domain maximum likelihood estimator has been
improved for modal parameter estimation based on input—output Fourier data. Depending on the
application, the use of advanced identification methods certainly improves the model accuracy by
taking additional information about the errors on data into account. If required, the proposed
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maximum likelihood estimator also allows the simultaneous derivation of confidence bounds.
Besides the advantages of better signal quality and leakage-free signal processing, the use of
broadband excitation signals (e.g., multisine, periodic chirp) enables a fast determination of the
noise covariance information for an errors-in-variables noise model.

The numerical optimization made the ML estimator suitable for handling large modal data sets
with high modal density. Elimination and substitution procedures, algebraic and matrix
properties and fast signal processing techniques are optimally applied in the implementation in
order to handle large data sets in a reasonable time.

When random noise excitation is required, I0-based frequency-domain identification enables a
parametric compensation for the effects of leakage by estimating the initial (and final) conditions
together with the system parameters. This makes this estimator very robust for cases with short
data records measured under arbitrary excitation.
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Appendix A. Nomenclature

d.o.f. degrees of freedom

ETFE empirical transfer function estimate
EV errors-in-variables

FFT fast Fourier transform

FRF frequency response function

FML fast maximum likelihood

H, output-noise only FRF estimator

H, scaled FRF estimator

H; instrumental variables FRF estimator
H,, errors-in-variables FRF estimator

10 input/output

v instrumental variables

LS least squares

LSCE least-squares complex exponential
MIMO multiple input multiple output
ML maximum likelihood

MLE maximum likelihood estimator
SDOF single degree of freedom

SISO single input single output

SLDV scanning laser Doppler vibrometer
WLS weighted least squares
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